skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rwezaura, Herieth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During large scale outbreaks of infectious diseases, it is imperative that media report about the potential risks. Because media reporting plays a vital role in disseminating crucial information about diseases and its associated risk, understanding how media reports could influence individuals’ behavior and its potential impact on disease transmission dynamics is important. A mathematical model within an optimal control framework of a generic disease, accounting for treatment and media reporting of disease-induced deaths is formulated. Due to the complexity of choosing the best media function, our goal is to attempt to address the following research question: what is the effect of the media-induced functional response on mitigating the spread of the disease? Connecting the functional forms to the control problem is an approach that is not very developed in the literature. Thus, this study analyses the effect of different incidence functions on disease transmission, and the qualitative nature of epidemic dynamics by carrying out optimal control analysis using three different contact rates and a media function that is dependent on the number of deaths. Theoretical analyses show that the functional forms of the effective contact rate have no effect on initial disease transmission. Time-dependent controls for treatment and vaccination with a constant effective contact rate are incorporated to determine optimal control strategies. Numerical simulations show the short-term impact of media coverage on mitigating the spread of the disease, and it is observed that with three incidence functions used, the qualitative nature of the controls remains the same. The effective contact rates are graphically shown to have a population-level effect on the disease dynamics as the number of treated and recovered individuals could be significantly different. Finally, it is shown that treatment of infectives should be at its maximum rate for a longer period compared to vaccination, while concurrent implementation of vaccination and treatment is more impactful in mitigating the spread of the disease. Thus, it is imperative that media reports and health policy decision making on infectious diseases are contextualized. 
    more » « less